On Vulnerability of Power and Total Graphs
نویسنده
چکیده
In communication networks, greater degrees of stability or less vulnerability is required. The vulnerability of communication network measures the resistance of the network to the disruption of operation after the failure of certain stations or communication links. If the network begins losing communication links or processors, then there is a loss in its effectiveness. Thus, communication networks must be so designed that they do not easily get disrupted under external attack and, moreover, these are easily reconstructible if they do get disrupted. These desirable properties of networks can be measured by various graph parameters like toughness, integrity, scattering number, tenacity and rupture degree. Power graphs and total graphs constitute a large class of graphs and which are widely used in systems ranging from large supercomputers to small embedded systems-on-a-chip. In this paper, we firstly give the exact values for the integrity and toughness of powers of paths. After that, the vulnerability parameters such as integrity, toughness, rupture degree of total graphs of some special graphs are calculated. Finally, the relationships between some vulnerability parameters, namely the integrity, toughness, scattering number, tenacity and rupture degree are established. Key–Words: Vulnerability, Integrity, Toughness, Scattering number, Tenacity, Rupture degree, Total graph, Power graph.
منابع مشابه
Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملTenacity and rupture degree parameters for trapezoid graphs
Reliability of networks is an important issue in the field of graph and network. Computation of network vulnerability parameters is NP-complete for popular network topologies such as tree, Mesh, Cube, etc.In this paper, we will show that the tenacity and rupture degree parameters for trapezoid graphs can be computed in polynomial time.
متن کاملComputing rupture degrees of some graphs
Computer or communication networks are so designed that they do not easily get disrupted under external attack and, moreover, these are easily reconstructed when they do get disrupted. These desirable properties of networks can be measured by various parameters such as connectivity, toughness, tenacity and rupture degree. Among these parameters, rupture degree is comparatively better parameter ...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کامل